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Abstract

This study presents the force and mass discretization of exceptional points in the compatible formulation of Lagrangian
hydrodynamics. It concludes a series of papers that develop various aspects of the theoretical exposition and the opera-
tional implementation of this numerical algorithm. Exceptional points are grid points at the termination of lines internal
to the computational domain, and where boundary conditions are therefore not applied. These points occur naturally in
most applications in order to ameliorate spatial grid anisotropy, and the consequent timestep reduction, that will otherwise
arise for grids with highly tapered regions or a center of convergence. They have their velocity enslaved to that of neigh-
boring points in order to prevent large excursions of the numerical solution about them. How this problem is treated is
given herein for the aforementioned numerical algorithm such that its salient conservation properties are retained. In doing
so the subtle aspects of this algorithm that are due to the interleaving of spatial contours that occur with the use of a spa-
tially-staggered-grid mesh are illuminated. These contours are utilized to define both forces and the work done by them,
and are the central construct of this type of finite-volume differencing. Additionally, difficulties that occur due to uncer-
tainties in the specification of the artificial viscosity are explored, and point to the need for further research in this area.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Most physical applications that involve Lagrangian or ALE hydrodynamics calculations employ grids that
must be unstructured to some degree to avoid the spatial grid stiffness that would otherwise occur, resulting in
an unacceptable decrease in timestep. While the problem of differencing the hydro equations about excep-
tional, or irregular, points of such grids has been addressed in a previous paper for the case where the exact
one-dimensional symmetry limit is desired in curvilinear coordinates [1], the solution presented requires rota-
tions of the force that may not be desirable for general cases, particularly those where low-dimensional sym-
metry is not important and does not attain to any approximate degree in the solution. However, the general
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discussion given therein of the timestep vicissitudes of such grids remains valid and is not repeated here. An
example of the type of grid previously considered is shown in Fig. 1. Here the terminated lines, and associated
exceptional points, are displayed as hollow circles that are placed at the midpoints of straight lines connecting
neighboring regular points. This is opposed to being placed on a common radius as previously depicted in [1].
It is in general necessary to enslave the terminated points shown in Fig. 1 to prevent large unphysical pertur-
bations in the solution from occurring about them when disturbances such as shock waves propagate in any
direction across them. Thus the force and mass discretizations that are suitable for regular zones that do not
contain these points must be appropriately modified where they are present in the grid. This requires a careful
investigation of the discretization properties of the underlying hydro algorithm that elucidates all assump-
tions, transparent or hidden. To this end, Section 2 gives a brief review of the hydro algorithm that forms
the title of this paper. This is, however, a new and concise presentation that displays essential features that
complement previous expositions [2,3].

In Section 3 the types of grids encountered are briefly detailed as well as the basic constraints that are
enforced when both mass and force from the exceptional points are ‘‘donated’’ to neighbors to which their
velocity is enslaved, making the former ‘‘nondynamical’’. Section 4 gives numerical results that validate the
discretization rules introduced in Section 3, and quantifies the magnitude of errors that necessarily occur when
strong shock waves encounter these points. In particular, special attention is paid to the artificial viscosity
forces as they are velocity dependent; and since velocity interpolation is utilized, these forces can result in
sensitivities that are difficult to counter by any general prescriptions. Last, a discussion of this work and its
principal conclusions is given.

2. Discrete, compatible Lagrangian hydrodynamics

The discrete, compatible formulation of Lagrangian hydrodynamics [3] essentially modernizes older forms
of Lagrangian hydro [4]. It places this type of numerical algorithm into a simple and consistent framework
where conservation of total energy plays the central role, but where the principal dependent variables remain
density, velocity, and specific internal energy. Like all the older versions of Lagrangian hydrodynamics it
employs a staggered grid in space with velocity and position carried on points ‘‘p’’, and density, specific inter-
nal energy, and stress centered in zones ‘‘z’’. However, both zones and points are considered to be surrounded
by interleaved volumes circumscribed by lines in 2D (or surfaces in 3D) that are termed the ‘‘coordinate-line’’
and ‘‘median’’ meshes, respectively, as shown in Fig. 2. This interleaved topology allows for a simple finite-
volume calculation of forces. These act from zones that carry a mass Mz, and onto points that carry a mass
Mp, where ‘‘z’’ and ‘‘p’’ are integer indices that range over all zones and points, respectively. Auxiliary quan-
tities denoted as ‘‘corner’’ masses and forces are introduced; these are unique and common to both a zone and
a given point of that zone, and thus carry both the zone and the point indices. The zone and point masses and
the total force acting on a point are then constructed from these more primitive entities as simple sums. The
corner mass is denoted as mp

z or mz
p, and the corner force as~f

p

z or~f
z

p, where the lower index denotes that which
Exceptional
point

Dynamical 
point

Fig. 1. Typical mesh with exceptional points. Exceptional points are enslaved to adjacent dynamical points on an angular grid line.



Fig. 2. Coordinate-line mesh thru solid dots; median mesh thru stared points: subcell geometrical vectors~a1;~a2;~S1;~S2 associated with zone
‘‘z’’; mp

z is corner mass.
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is summed, but they are otherwise equal. The corner forces mediate the exchange of kinetic and internal energy
from points to zones, or vice-versa.

The essentials of this algorithm can be presented in a very succinct form that displays both its power and
simplicity in the following manner: consider the change in the kinetic energy of a point ‘‘p’’ between two time
levels ‘‘n’’ and ‘‘n + 1’’ as given by DKp � Mp½ð~vnþ1

p Þ
2 � ð~vn

pÞ
2�=2 in a timestep Dt. Then note that the difference

in the squares of the point velocity,~vp, between the two time levels can be uniquely factored to yield
DKp ¼ MpD~vp � D~rp=Dt; ð2:1Þ

where D~vp � ð~vnþ1

p �~vn
pÞ, and more importantly the change in the position vector,~rn

p, is D~rp � ð~vnþ1
p þ~vn

pÞDt=2.
That is, the reason the coordinates are advanced as~rnþ1

p ¼~rn
p þ D~rp with the just specified form for D~rp is not to

obtain second order accuracy in time (other forms may give higher order), but because of the manner in which
the kinetic energy difference between two time levels factors! Defining the change in internal energy in a zone
in a time Dt as MzDez, where Dez � ðenþ1

z � en
z Þ, and summing the change of kinetic energy over all points ‘‘p’’,

and the change in internal energy over all zones ‘‘z’’, the change in total energy on a timestep, DE, can be writ-
ten as
DE �
X

p

MpD~vp � D~rp=Dt þ
X

z

MzDez ¼ DW bd; ð2:2Þ
where DWbd is the boundary work performed on the particular timestep. Next the momentum and specific
internal energy equations are ‘‘postulated’’ to have the discrete forms
MpD~vp ¼
X

z

~f
p

z Dt; ð2:3Þ
where the sum of the arbitrary corner force is over all zones that contain point ‘‘p’’, and
MzDez ¼ �
X

p

~f
z

p � D~rp; ð2:4Þ
where this sum is over all points that circumscribe zone ‘‘z’’. Note that what has been done is to define the total
force that acts on a point ‘‘p’’ as the sum of all corner forces that act from zones adjacent to that point; and
also, to define the work done into a zone ‘‘z’’ as the negative sum of the corner forces of that zone dotted into
their respective point displacements on the given timestep. For example, for the case of pressure forces this
sum is a discrete form of �PzDVz work, where Pz is the zone pressure and DVz is the change in zone volume
in a timestep.

Writing the momentum equation in the form given by Eq. (2.3) may appear to be simply a useful division
of the force acting on a point into single contributions from surrounding zones. However, that the work
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performed by a zone can be written as Eq. (2.4) utilizing the same corner forces such that this work becomes a
simple sum of corner force times point displacement is more significant, as this guarantees exact conservation
of total energy for forces of completely arbitrary origin. Note that the force of gravity exchanges kinetic
energy with gravitational potential energy and thus does not enter into the corner force; but rather, enters
directly as an additional term on the RHS of the momentum equation, and with the kinetic energy of a point
augmented by its gravitational potential in the total energy tally. Likewise, Eq. (2.4) can contain an additional
source term on the RHS that originates from the direct deposition of internal energy from chemical or other
sources.

To demonstrate energy conservation suppose that the momentum equation, Eq. (2.3), is dotted into the
point displacement on a timestep, D~rp, and its RHS inserted into the first sum in Eq. (2.2). Then the RHS
of Eq. (2.4) is likewise inserted into the second sum of Eq. (2.2). This results in
DW bd ¼
X

p

X

z

~f
p

z � D~rp �
X

z

X

p

~f
z

p � D~rp;¼
X

p¼bd

X

z¼ext

~f
p

z � D~rp. ð2:5Þ
Since the corner force is unique to a given zone and point of that zone (recall that ~f
p

z ¼ ~f
z

p), the second sum
from the internal energy equation completely cancels with terms from the first sum due to the momentum
equation. There remains only terms that sum over the boundary points ‘‘p = bd’’ from the external zones
‘‘z = ext’’ that lie adjacent to these points that form the prescribed boundary; these terms define the boundary
work performed on the given timestep. Thus total energy is conserved exactly in that when integrated in time
Eq. (2.2) yields En ¼ En¼0 þ W n

bd, where En=0 is the initial total energy and W n
bd is the sum of the boundary

work as given by Eq. (2.5) over all timesteps to the final time ‘‘tn’’. Total energy is also conserved locally
in that the internal domain of interest can consist of any collection of zones, or just a single zone. This latter
case is illustrated in Fig. 3 where a single 2D quadrilateral zone ‘‘z’’ is shown with its associated corner forces
‘‘~f

z

i ’’, and where ‘‘i = 1. . .4’’ ranges over its defining points. For this case En ¼ Mzen
z þ

P4
i¼1Mið~vn

i Þ
2
=2. Defin-

ing ‘‘~F i’’ as the sum of all corner forces that act on point ‘‘p = i’’ in a timestep, it follows from Eq. (2.5) that
the boundary work performed on a timestep is DW bd ¼

P4
i¼1ð~F i �~f

z

i Þ � D~ri. This is the total exterior work per-
formed with respect to any single zone. If there is no mass exterior to the boundary, the sum of all zone masses
and the sum of all point masses are equal (a consistency requirement), but otherwise this is not true and is not
necessary for total energy to be conserved.

As previously noted [3], the discrete form of the equations for total energy, momentum, and internal energy
when written as Eqs. (2.2)–(2.4) constitute an algebraic identity; given any two, the third uniquely follows.
This identity employs three totally arbitrary entities referred to as the zone mass, Mz, the point mass, Mp,
and the corner force (~f

p

z or ~f
z

p). It is the proper specification of these otherwise abstract objects that gives this
system physical meaning; however, whatever their specification the quantity defined above as ‘‘total energy’’ is
always exactly conserved. The program of the rest of the development of the discrete, compatible formulation
f3
z f2

z

f
z

4 f1
z

p=3 p=2

p=1p=4

z

Fig. 3. Single quadrilateral zone ‘‘z’’ with its defining points p1, p2, p3, p4, and associated corner forces ~f
z

p, 1 6 i 6 4.
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of Lagrangian hydrodynamics is to specify these three objects. The word ‘‘discrete’’ is to be emphasized in that
these equations are considered to describe the time evolution of small fluid volumes, as opposed to a differ-
encing of the equations of continuum fluid dynamics.

The nodal and zonal masses, Mp and Mz, are straightforwardly constructed by introducing the corner mass
mp

z or mz
p, where the zone mass is simply the sum of all mz

p�s over points about the specified zone ‘‘z’’; and
likewise, the point mass Mp is the sum of all mp

z �s over all zones adjacent to point ‘‘p’’ [3]. The median
mesh is hinged by auxiliary points, shown as asterisks in Fig. 2, that are determined by time independent
interpolation coefficients (usually 1/2, 1/4, . . .) applied to neighboring dynamical points. That these
coefficients be time independent is necessary to prevent destructive nonlinear feedback between the median
and coordinate-line meshes. The specification of the corner force is much more involved, and is given
for regular zones in both 2D and 3D for all force contributions: mean zone stress, artificial viscosity, and
anti-hourglass forces in a series of previously published papers [3,5–9]. Although this corner force specification
is given as a form of finite volume differencing, other discretizations can be utilized to define the corner forces.
It is the purpose of this work to extend the finite volume definitions to the aforementioned case of exceptional
points that preserve not only conservation of total energy, but also the conservation properties of Eqs.
(2.2)–(2.4) that the original corner force specifications enforce. The nature of these are briefly detailed.

Principal amongst the additional conservation laws is the conservation of linear momentum, which can be
stated most succinctly as the homogeneity of space (referred to as Noether�s theorems [10]). This adheres for
our discrete equations as follows: suppose that a constant but arbitrary displacement vector, ‘‘~r0’’, is added to
the coordinates of all points in space by performing a Galilean boost,~v0, such that~r0 ¼~v0Dt during any given
timestep. Then for the discrete form of the internal energy equation, Eq. (2.4), to remain unchanged it is
required that
X

z

~f
p

z �~r0 ¼~r0 �
X

z

~f
p

z ¼ 0. ð2:6Þ
Thus the requirement of linear momentum conservation is just the statement that all corner forces in a zone
must sum to zero. For zones with a constant stress throughout the entire zone, this means that the zone vol-
ume is closed and simply connected so that the sum of its surface area vectors equal zero. (Note that for 1D
cylindrical or spherical geometry this requirement does not hold since these zone volumes, as formed by two
concentric circles or spheres, are not simply connected.) Conservation of angular momentum, as the isotropy
of space, follows similarly as requiring

P
p~rp �~f

z

p ¼ 0 in each zone, where~rp is the position vector to a point
‘‘p’’ from any arbitrary origin of the coordinate system. All corner forces are required to obey conservation of
linear momentum on a single zone basis when cast into Cartesian geometry. This property is central to our
treatment of exceptional points; however, not all force contributions obey angular momentum conservation
on a single zone basis if they arise from stresses that are not constant throughout a given zone. This is true
for both the subzone-pressure anti-hourglass forces [6], and the edge-centered artificial viscosity forces [5].
However, studies have shown that global breaking of angular momentum conservation remains at small trun-
cation error levels for these force contributions. Finally, for the stated system of equations to give useful
results they must be time advanced in a numerically stable manner. This is achieved by a predictor-corrector
step where the predictor and corrector stages are identical except that the corner forces are centered at the ‘‘n’’
time level on the predictor, and at the ‘‘n + 1/2’’ time level on the corrector, resulting in second order accuracy
in time and numerical stability subject to the usual CFL constraint [1].
3. Finite-volume mass/force/work computation

The basic program of this work is to give a general prescription of how to perform the force and mass dis-
cretizations about exceptional points of terminated lines as shown in Fig. 1. However, this may not be for the
simple terminations shown; instead these may consist of a line of such points in two or in three dimensions. It
is not our purpose to detail all possible cases, but instead, to give some general rules that enable one to adapt
the basic underlying differencing to any situation, and to illustrate the general method and show its effective-
ness for certain relevant cases. The central idea is to treat all points as though they are regular, then the excep-
tional points have their associated corner forces and masses appropriately ‘‘donated’’ to points to which their
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velocity is enslaved. One must examine the character of the individual contributions to the corner force to
ascertain that they still behave in a physically meaningful manner. First, the kind of zone topologies encoun-
tered with the exceptional points of terminated lines must be considered.

Two types of median mesh configurations that can occur in 2D geometry for the exceptional point ‘‘pe’’ are
shown in Fig. 4. If this point is considered to be a defining point of all zones, as is the case in Fig. 4(a), then the
large zone on the left is a degenerate pentagon; whereas in Fig. 4(b), this point belongs to the smaller rectan-
gles on the right but is not considered a defining point for the large zone on the left, which remains a quad-
rilateral. Since the lines that comprise the median mesh connect midpoints of the coordinate lines to the zone
center point, the subzone corner volumes appear skewed to one side if the exceptional (termed ‘‘nondynam-
ical’’ from hereon) point is considered part of the larger zone. Thus the light gray region in Fig. 4(a) denotes
the three corner masses that are associated with point ‘‘pe’’ if it were to remain dynamical. Our first alteration
from the usual definitions used to construct the median mesh is to erase the nondynamical point from being
associated with the large zone on the left in Fig. 4. All corner forces are thus constructed from the mesh shown
in Fig. 4(b). The nondynamical point ‘‘pe’’ now obtains mass only from the two small corner volumes of the
rectangular zones of Fig. 4(b) shown as the light gray region, and no mass from the larger zone to its left that
no longer identifies it as a part of that zone; the same statement holds for the corner forces. Next, three basic
principles are enunciated that determine how to difference about any one or any set of nondynamical points:

1. Corner masses are donated from nondynamical points such that, aside from convergence effects, corner
volumes are matched in size about dynamical points that neighbor nondynamical ones.

2. Corner forces are donated from nondynamical points to neighboring dynamical points such that force
equilibrium is achieved for uniform stress in a region about these points.
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Fig. 4. (a) Exceptional point pe, shown as ‘‘s’’, is considered as a dynamical point for the large zone z0 and the smaller zones z1, z2;
Subcells of point pe are light gray regions. The median mesh is plotted with dashed lines, the coordinate-line mesh with solid lines. (b)
Exceptional point pe considered a dynamical point for only for the smaller zones z1, z2. The subcell associated with pe in zone z0 no longer
exists. The dark gray subcells are the ones to which the remaining masses/forces of point pe are donated, mz
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associated with zone z and point p. (c) Coordinate-line mesh area vectors ~ai, 1 6 i 6 3, associated with the subcell force donations and
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3. Conservation of linear momentum as defined by Eq. (2.6) must be maintained for all zones. This generalizes
the definition of the term ‘‘zone’’.

The consequences of these three requirements are now examined.
The basic idea behind the first of our three statements is readily seen from Fig. 4(b). To make the corner

volume and corner mass on the right side of the two dynamical points ‘‘p1’’ and ‘‘p2’’ match that from the large
zone on the left of these points, one must let mz1

p1
! mz1

p1
þ mz1

pe
and mz2

p2
! mz2

p2
þ mz2

pe
. Next one sets both mz1

pe
and

mz2
pe

equal to zero, so that the nondynamical point ‘‘pe’’ carries no mass; thus it does not contribute kinetic
energy to the total energy tally.

The requirement of equilibrium for uniform stress demands that the two corner forces that act on point
‘‘pe’’ from zones ‘‘z1’’ and ‘‘z2’’ first be summed, then one-half of this sum is donated to points ‘‘p1’’ and
‘‘p2’’. That these corner forces must be summed before being donated can be seen from the fact that for a uni-
form pressure ‘‘P’’ in zones ‘‘z1’’, ‘‘z2’’ and ‘‘z0’’, ~f

z1

pe
¼ Pð~a1 þ~a3Þ and ~f

z2

pe
¼ Pð~a2 �~a3Þ. (Here the grid vectors

~ai are oriented as shown in Fig. 4(c) and have magnitudes of the length of the half-edges to which they are
normal.) By adding these two corner forces the term associated with the grid vector ~a3 cancels. Thus when
this sum is donated to the dynamical points ‘‘p1’’ and ‘‘p2’’ with simple factors of one-half to each, force equi-
librium is achieved when taking into account the corner force contribution from the large zone, ‘‘z0’’, that lies
to the left side of these points. That is, we define ~F pe

� ~f
z1

pe
þ~f

z2

pe
and then let ~f

z1

p1
! ~f

z1

p1
þ~F pe

=2,
~f

z2

p2
! ~f

z2

p2
þ~F pe

=2. Last, we set ~f
z1

pe
and ~f

z2

pe
to zero and can proceed with zone sweeps as before to assemble

the total force on all points.
The sum of the original corner forces add to zero individually in the two rectangular zones of Fig. 4(b) that

contain the nondynamical point ‘‘pe’’. However, because of the sum and then division performed to satisfy the
requirement of force equilibrium for uniform pressure, zones ‘‘z1’’ and ‘‘z2’’ must now be considered as a single
composite zone when the internal energy equation, Eq. (2.4), is solved. That is, the sum of the corner forces of
both of these zones still sum to zero, but no longer on a single zone basis. Thus the change of specific internal
energy, Dez, due to the corner forces acting in these two zones must be considered as a single sum. This is
because by donating the force from the nondynamical point, the grid vectors that make up the force contours
sum to zero only over the composite region ‘‘z1 + z2’’. If there are no other energy sources in Eq. (2.4), and if
both regions ‘‘z1 and ‘‘z2’’ have equal specific internal energies at time zero, then this equality is maintained for
later time. However, even in this case the pressure in these two zones need not be equal since their zone den-
sities can still have different values.

The velocity enslavement of nondynamical points always utilizes a simple linear interpolation to neighbor-
ing dynamical points. This serves to keep the position of these points closely synchronized to dynamical ones
preventing large spatial excursions that would otherwise occur. Thus for the case shown in Fig. 4(b),
~vpe
¼ ð~vp1

þ~vp2
Þ=2, keeping the enslaved point ‘‘pe’’ at the midpoint of the line connecting points ‘‘p1’’ and

‘‘p2’’.
The procedure just outlined can be extended to two or more terminated lines with associated nondynamical

points between two dynamical points, to which their velocities are enslaved by linear interpolation, in a com-
pletely analogous manner. The large zone adjacent to the terminated lines is again made into a quadrilateral,
and all its corner forces are computed the same as for any other quad. Corner volumes are donated to the two
dynamical points such that corner volume matching is achieved with respect to the large zone. Corner forces
are summed on the terminated line side and then donated to the dynamical points with coefficients that are the
same as used to donate the nodal volume/mass. (That is, a single nondynamical point may now contribute all
of its nodal mass and force to a single dynamical point, instead of one-half to each.) Likewise in 3D, although
the situation may be more complicated to visualize, the manner in which the nondynamical points of termi-
nated lines are treated is not fundamentally different than in 2D; the three principles given above are applied to
all situations using a linear interpolation of the velocity from the dynamical to the nondynamical points.

The artificial viscosity forces that appear in these equations must be given special consideration as these
forces are velocity dependent, and thus do not compose about nondynamical points in the same manner as
the total stress and anti-hourglass forces that are completely accounted for by the above set of rules. However,
in the calculations shown in the next section they are treated the same as all other forces since the basic algo-
rithm consists of assembling the corner force from all the various contributions and then manipulating the
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corner force as previously described. Two different forms of artificial viscosity are utilized: an edge-centered
form [5] and a tensor form [9]. The edge-centered form is simple and intuitively based, and works particularly
well when the fluid flow is close to grid-aligned; lower-dimensional symmetry properties are automatically cap-
tured. However, it contains no information about the zone topology. In contrast, the tensor form connects all
points of a zone and gives better results when the fluid flow is far from being aligned with the grid; however,
for highly elongated zones it can connect disparate zone length scales in an unphysical manner. The tensor
form of the artificial viscosity is unchanged in its calculation in zones that contain nondynamical points.
The edge-centered artificial viscosity is modified from the form given in [5] as follows: first, the density and
sound speed used to compute this viscosity is taken to be the zone values, rather than from point-centered
averages. This is done for all zones to obtain consistency across the mesh. Any change in the functional form
of the artificial viscosity within the computational domain will itself result in errors for a steady-state shock
even if there are no terminated lines. Second, the limiter function used with the viscosity calculated on the edge
that connects the nondynamical point to that with a larger major radius, as shown in Fig. 1, is calculated as an
average of that of the two limiters adjacent to it and oriented in the same direction. Thus for grid aligned flow
in the radial direction in Fig. 1 these edges all have the same value for the limiter function. Other concerns
about the artificial viscosity forces are discussed after presenting the numerical results that highlight difficulties
that can occur with their use.

Finally, for completeness the trivial case of degenerate points is mentioned. Degenerate points occur at a
center of convergence in 2D or 3D, or along the z-axis of a polar grid in 3D, where a set of points that are
initially coincident are required to move together. In this case one simply adds the individually separate nodal
masses and forces associated with these points for use in updating the common point velocity from the
momentum equation. The change in specific internal energy of these zones need not be averaged as they
are still separately Galilean invariant; however, this averaging can result in more robust results and is
performed for the edge-centered artificial viscosity. An example of this is shown later with the Guderley test
problem [11] utilizing a mesh with a center of convergence that is displaced along the z-axis, and moves when it
encounters a converging shock wave.

4. Numerical results

The numerical results given next are of two types: sanity checks that gauge the effect of our donation pro-
cedure for two driven piston problems (a straight piston and the so-called Saltzman piston [12]), and more
difficult tests utilizing the well-known Noh [13] and Guderley problems. The latter problems assess the size
of errors in 1D symmetry, and the general robustness of the method in addition to its ability to keep the time-
step from decreasing precipitiously. The results are computed with a 2D, unstructured grid code developed in
the group T-7 at LANL [14,15]. A simple ideal gas law, c = 5/3, equation of state is employed to compute
pressures. An advection-type limiter is utilized to restrict the magnitude of both forms of artificial viscosity
that are employed, edge-centered [5] and tensor [9], unless otherwise indicated.

We begin with a straight piston problem whose initial grid is shown in Fig. 5. The grid is on a domain of
unit horizontal length and with a width of 0.1 in the ignorable, vertical direction with 101 equally spaced ver-
tical lines and 21 equally spaced horizontal lines, one-half of which terminate at the middle of the domain.
Thus the zones in the coarser region on the left half of the figure have one to one aspect ratio, and those
in the finer region on the right half have 2:1 aspect ratio, elongated in the vertical direction. The initial density
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Fig. 5. Straight piston with termination lines – initial mesh.
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is unity, with zero initial specific internal energy; the left piston boundary moves to the right with unit velocity
driving a shock wave into cold media and across the terminated lines. Results showing the grid and density
isolines at time t = 0.6 using the edge-centered viscosity are given in Fig. 6 parts (a) and (b): part (a) shows
the result obtained with no modifications about the terminated lines, and part (b) presents results obtained
if the mass and force donation procedure is performed. In the first instance the perturbations caused by the
shock wave crossing the layer of terminated lines is clearly visible at the shock front that has moved far to
the right of this layer. In part (b) these perturbations are totally absent; there are also no residual density
changes at the termination layer. That is, the presence of terminated lines causes no perturbations to the solu-
tion, which is the same as though these lines were totally absent. With the use of the tensor artificial viscosity
similar results are also seen; perturbations in the density are somewhat smaller than those in Fig. 6(a), but are
still clearly visible; they are removed by the donation procedure. No subzone pressure forces are utilized, as
these are unnecessary for this type of problem.

Next the initial grid shown in Fig. 5 is given the standard Saltzman perturbation to obtain the one displayed
as Fig. 7. This problem is rerun with subzone pressure forces using a merit factor, Mf = 1.0. In Fig. 8 results
are given at time t = 0.6 for four cases: parts (a) and (b) show the grid and density contours without, and with,
modification for points at the termination layer, respectively, using the edge-centered artificial viscosity. These
two figures are almost identical, and thus the donation procedure did not result in an improved solution but it
also did not degrade it. In parts (c) and (d) are shown the results using the tensor artificial viscosity without,
and with, modification for points at the termination layer. In this case the mass and force donations at the
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termination layer result in a very substantial improvement. The shock front nearly breaks apart downstream
of the termination layer and is close to failure without these modifications, but the results seen with them are
better than those with the edge-centered viscosity. This problem also shows the necessity for averaging the
work done on a timestep in the zones that share a common nondynamical point, which is a consequence of
our third criterion that guarantees linear momentum conservation. If this averaging procedure is not carried
out, negative specific internal energy is encountered in some of these zones and the calculation ends. It is only
the sum of the work done into zones with a common nondynamical point that is positive.

The spherical Noh problem [13] is next considered in cylindrical geometry using area-weight differencing on
an angular grid with one layer of terminated lines. The initial conditions are unit density, zero specific internal
energy, and an inward radial velocity of magnitude 1.0. A spherical stagnation shock wave is generated and
t z m a n p i s t o n w i t h t e r m i n a t e d l i n e s … m e s h a n d d e n s i t y a t t = 0 . 6 : ( a ) e d g e v i s c o s i t y o r i g i n a l c o d e , ( b ) e d g e v i s c o s i t y w i t hr v i s c o s i t y o r i g i n a l c o d e , ( d ) t e n s o r v i s c o s i t y w i t h d o n a t i o n … n o t e d i � e r e n t s c a l e s d u e t o d i � e r e n t b e h a v i o r s . 1 0 R . L o u b eJ o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 1 6 ( 2 0 0 6 ) 1 … 1 8
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travels outward from the center. Subzone pressure forces are turned off because they are not needed for this
problem when run without terminated lines. The timestep is increased by a factor of two as expected with the
single termination layer; for a high resolution simulation multiple termination layers are necessary. The sim-
ulation is performed to the point where the shock reaches the location of the first termination line at
t = 0.07866. The grid at this time is shown in Fig. 9: parts (a) and (b) are without, and with, mass and force
donation, respectively, using the edge-centered viscosity. A very large sawtooth-like oscillation occurs at the
termination layer. This is largely, but not totally, removed by the enslavement procedure. Without subzone
pressure forces the calculation in part (a) will not continue much longer; with them the grid distortion is some-
what reduced but not eliminated. In parts (c) and (d) are given the corresponding results for the tensor viscos-
ity without, and with, the donation procedure, respectively. The grid without donation in part (c) is
comparable in quality to that in part (b) for the edge-centered viscosity with donation. The symmetry errors
in the density along the termination layer are detailed in Table 1. The donation procedure reduces these errors
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Table 1
Noh problem: symmetry errors for edge and tensor viscosities along termination layer

(qmax � qmin)/qmax Original code With donation

Edge viscosity 3.1 · 10�2 4.0 · 10�4

Tensor viscosity 4.5 · 10�2 1.2 · 10�4
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to truncation levels, but recall that for no termination layer and area-weight differencing they are always at
roundoff error level.

The last test problem considered is the driven spherical impulsion problem of Guderley [11]. This has an
initial density of unity, zero specific internal energy, and a velocity boundary condition given in [6] using
area-weight differencing in cylindrical geometry. Results are shown with two layers of terminated points,
and for comparison without terminated lines, for two types of grid setups: first, with 51 equally-spaced radial
and 51 equally-spaced angular divisions on a one-half circular domain of unit initial radius, with a center of
convergence at (r = 0, z = 0); and second, the same total domain but with circular lines that have their centers
moved along the z-axis such that the center of convergence is displaced to the point (r = 0, z = 0.5). In both
cases the velocity boundary condition is the same, and the outer boundary remains a circle with center at
(r = 0, z = 0). Subzone pressure forces with merit factor unity are utilized for both the centered and off-axis
center of convergence cases. This problem is run to a time t = 0.8 at which point the shock wave has reached
the true center of convergence, is propagating outward, and has recrossed the inner layer of terminated points.
The results are seen in Fig. 10 where the top two parts show the grid and density isolines for no radially terminated
layers. The bottom two parts give these same results with two terminated layers; the edge-centered artificial
viscosity and the donation procedure at the termination layers are utilized. The results are very comparable in
quality. The number of timesteps needed to run without and with terminations is about 3000 and 1000,
respectively. It is this decrease in spatial grid stiffness without degradation in solution quality that the donation
procedure is intended to produce. The tensor form of the artificial viscosity produces results of similar quality.

Finally, Fig. 11 shows the initial grid for the Guderley problem with the displaced center of convergence
described previously, both with two layers of termination lines and without such points. Results are given
in Fig. 12 utilizing the edge-centered viscosity for the case without, and with, termination layers; both the grid
and the density isolines are shown at the final time of t = 0.8. Likewise, similar results are given for the tensor
viscosity at the same final time in Fig. 13. The density bulge that results from the shock wave that is reflected
from the true center of convergence of this problem at (r = 0, z = 0) is quite visible in both figures. With the
edge-centered viscosity and no terminated lines it took about 9000 timesteps to run to completion, whereas
with the two termination layers this was reduced to roughly 2000; for the tensor viscosity these values are
approximately 6300 and 1700, respectively. Thus our donation procedure is effective in this regard. However,
in order to make these displaced center of convergence cases run to completion the limiters were turned off on
both forms of the artificial viscosity. Additionally, the velocity of points on the z-axis were enslaved to those
points on the next radial line angularly outward (for area-weight differencing this causes no energy errors since
these points carry zero mass [3].), rather than being moved dynamically as they are for the nondisplaced center
of convergence case shown in Fig. 9. Usually simulations terminate due to very small timesteps just after the
shock wave intersects the false center of convergence without this set of alterations. This can be changed some-
what depending on the value of the merit factor that multiplies the subzone pressure forces. Generally the ten-
sor form of the artificial viscosity shows more robustness and better quality of results for the case of very
nongrid-aligned flow than the edge-centered form, which agrees with the results presented in [9]. This rather
unsatisfactory state of affairs is due to the lack of a consistent form of the artificial viscosity that is optimal for
all simulations. This topic is addressed next.

4.1. Artificial viscosity forces

The artificial viscosity forces that are necessary to resolve shocks in the otherwise dissipationless Euler
equations that are solved herein have been the subject of much discussion and controversy since they were
introduced many years ago [16]. While there is still no universal agreement on the precise functional form
for these forces, they can usually be viewed as variations on the basic form expressed in [17] as
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qz ¼ q½csDvþ ðDvÞ2�; ð4:1Þ

where ‘‘qz’’ acts as an addition to the scalar pressure of zone ‘‘z’’, with the additional requirement that the zone
be under compression for the forces to be dissipative. The factor ‘‘q’’ is a measure of density, ‘‘cs’’ is a sound
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speed, and ‘‘Dv’’ is a jump in the magnitude of the velocity about a zone; all of these can be calculated in more
than one manner. The two terms on the RHS of Eq. (4.1) are referred to as the linear and nonlinear artificial
viscosity, respectively.

Ideally one wishes to solve the Euler equations by integrating along the characteristics of this hyperbolic
system. However, because this is both too difficult, and too expensive to compute, one resorts to shock cap-
turing methods by inserting an artificial viscosity term that regularizes the discontinuities that otherwise occur.
This term may be inserted directly as done herein, or as the consequence of solving a local Riemann problem,
with much the same effect. With the former approach, more recent forms of the artificial viscosity term that
give much improved results over older versions, are developed by specifying conditions under which the char-
acteristics of the Euler equations do not cross, and thus where dissipation is not needed. This results in the
inclusion of a limiter function that augments the compression switch in the basic artificial viscosity, Eq.
(4.1). The limiter has the form of that used for advection except that the ‘‘upwind’’ direction of material advec-
tion is unimportant, and also, it should not limit the magnitude of these forces so much that oscillations occur
behind a strong shock. The purpose of the limiter in this context is to turn off the artificial viscosity for adi-
abatic compression, or along a front of constant phase where the edge-projected velocity field is a linear func-
tion of the coordinates, and thus where the characteristics of the hyperbolic system do not cross. However, for
general flow that is nongrid-aligned there is no theory that indicates how this limiter should be constructed. It
can simply result in a decreased value of these forces that degrades overall robustness of the calculations, as
occurs with the above simulations.

For the terminated line situation considered in this paper, there is a more fundamental difficulty when the
artificial viscosity is computed using the velocity of a nondynamical point that has been set by linear interpo-
lation. As is seen from Eq. (4.1), a linear interpolation of the velocity from two dynamical points to one
nondynamical point results in a decrease in the strength of the linear viscosity term by one-half, and the
nonlinear term by one-quarter. This situation gets geometrically worse for the case of multiple terminations.
Furthermore, the limiter function defined along these edges is invalid since a limiter calculated from a linearly
interpolated velocity will always turn completely off. The zone-centered tensor artificial viscosity also exhibits
this problem, although in some averaged sense that is more difficult to quantify. One can separately
reconstruct the edge-centered viscosity without using the points that have interpolated velocities. This is the
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ideal solution, but one that is expensive computationally. The treatment of the artificial viscosity is found to be
problematical in that changes in zones that contain nondynamical points may be mirrored as errors (severe
zone volume collapse) in regular neighboring zones that do not contain these modifications. There is no
known ‘‘optimal’’ form of the artificial viscosity, and the inclusion of this term into the Euler equations is
always fraught with difficulties.
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5. Discussion and conclusions

The purpose of this work is twofold: first, to complete the compatible formulation of Lagrangian hydro-
dynamics by addressing the remaining finite-volume discretization questions that arise when treating grid
points that must be internally enslaved within the grid to prevent timestep collapse; and second, to address
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certain more general questions concerning the basic structure and implementation of this numerical algorithm.
That these issues are related is seen in Section 3. There it is shown that the types of grids that must be used to
reduce numerical perturbations about exceptional points involve a restriction of the type of zone to be uniform
across the grid. This is seen in going from Fig. 4(a) to (b) where a pentagon becomes a quadrilateral. A com-
pelling reason for using a restricted set of zone types is that the central quantity that must be computed to
implement this algorithm is the corner force. If one knows that the number of corners of all the zones is
the same, then sweeps over all zones, combined with sweeps over the known number of internal zone edges
and corners, allows the corner force to be assembled with computer code that is simple to construct, and which
executes in an efficient manner.

It was shown that the basic discretization about exceptional, or nondynamical, points could be largely han-
dled by three basic rules that involve already computed corner masses and forces so that the number of addi-
tional operations is small. These involved impedance matching of corner volumes and masses by donation to
nearby dynamical points to which the velocity of the nondynamical points is enslaved. An appropriate addi-
tion of the remaining corner forces, after median mesh grid adjustment, and their subsequent division and
donation to neighboring dynamical points is performed such that force equilibrium is achieved for uniform
stress (a necessary sanity check). It was shown that for the internal energy equation to obey momentum con-
servation about nondynamical points, it is required that the definition of what region in space constitutes a
‘‘zone’’ be generalized. A zone becomes the smallest region in space for which its associated corner forces
sum to zero. Thus, primitive zones that contain common nondynamical points must be lumped together in
calculating the work term in the internal energy equation. Numerical results were shown to validate the
procedures given, and to quantify the magnitude of the errors that necessarily occur with the introduction
of terminated lines and their associated nondynamical points. Artificial viscosity forces are always the most
crucial component of any shock-wave hydro algorithm. There is still no universally satisfactory form of the arti-
ficial viscosity suitable for all problems. The fact that different forms for this force are often utilized depending
on the type of problem being studied is the major remaining deficiency of this class of hydrodynamics methods.

Finally, the discrete, compatible formulation of Lagrangian hydrodynamics was developed in a manner
that explicitly displays the nature of this algorithm to be that of an algebraic identity. This identity consists
of two arbitrary scalars, the zone and point masses, and one arbitrary vector, the corner force, such that
the usual definition of total energy conservation is always exact. This algorithm thus reveals itself to be a true
tautology in the sense described in [18]. As such, it describes a priori truth that cannot be confuted, since in
primitive form it makes no assertion about any physical system. As remarked in [18], tautologies are neither
trivial nor useless, but embody the kernel from which physical systems of truth may be constructed. Thus the
quality with which the discrete, compatible formulation of Lagrangian hydrodynamics may describe certain
physical situations is mostly, if not entirely, dependent on the quality of the specification of the three abstract
quantities that compose it.
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